Title: Identifying critical transitions and their leading networks of complex diseases by dynamical network biomarkers.
报告时间:2012年11月14日(星期三)下午3:00
报告地点:教学主楼I区316
陈洛南,中科院上海生命科学研究院研究员,博导,中科院系统生物学重点实验室执行主任。1991年于日本东北大学获博士学位。
先后任职于日本大阪产业大学、中科院系统生物学重点实验室,曾任美国加州大学洛山矶分校(UCLA)访问教授、日本大阪产业大学电气工程与电子系终身教授,兼任日本东京大学生产技术研究所研究教授。在日本和美国从事研究工作25年, 曾是在日本少有的中国籍终身正教授之一。系统生物学建立初期,就从事计算系统生物学的工作,在计算系统生物学领域的主要国际学术期刊都担任重要工作,如《BMC Systems Biology》,《IEEE/ACM Trans. on Computational Biology and Bioinformatics》,《Journal of Theoretical Biology》, 《Journal of Royal Society Interface》,《IET Systems Biology》和《Int. J. of Systems and Synthetic Biology》等编辑或编委等。近六年多,在系统生物学研究领域发表了100篇以上原创性研究论文,著书11部。并被多个重要国际学术期刊邀请发表系统生物学的特邀论文。为了推动计算系统生物学的发展,他创建并任系统生物学国际大会OSB和IEEE ISB大会等主席,任GIW,ISMB,IEEE BIBM和ICCB等多个国际学术会议的组织或执行委员会主席或委员。在国际工程学术界筹建并出任IEEE-SMC系统生物学委员会主席。
2009年初,他应邀出任《系统生物学百科全书》(Springer 出版社)的编辑。但任国家自然科学基金重大研究计划专家委员,国家自然基金专家组评审专家等。
Abstract: We propose a model-free method to detect early-warning signals of complex diseases as well as the leading network even with small samples. Specifically, we theoretically derived a novel criterion based on a dynamical network biomarker (DNB) that serves as a general early-warning signal indicating an imminent bifurcation or sudden deterioration 1?5 before the critical transition occurs. Based on both theoretical and numerical analysis, we showed that predicting a sudden transition from small samples is achievable provided that there are a large number of measurements for each sample, e.g. high-throughput data. In particular, we adopted three real microarray data for lung injury disease, liver cancer, and lymph cancer which demonstrated the effectiveness of our novel method.The relevances of the identified DNBs with the diseases were also validated by the experiment data.